О методологии моделирования

Задача – модель - метод – условия применимости

. Применение моделирования при принятии решений предполагает последовательное осуществление трех этапов исследования. Первый - от исходной практической проблемы до теоретической чисто математической задачи. Второй – внутриматематическое изучение и решение этой задачи. Третий – переход от математических выводов обратно к практической проблеме. Выбирая свой путь в мире исследований по теории и практике принятия решений, приходится обдумывать и решать вопросы, относящиеся к методологии науки.

В области моделирования задач принятия решений, как, впрочем, и в иных областях применения математики, целесообразно выделять четверки проблем:

ЗАДАЧА – МОДЕЛЬ - МЕТОД - УСЛОВИЯ ПРИМЕНИМОСТИ.

Обсудим каждую из только что выделенных составляющих.

Задача, как правило, порождена потребностями той или иной прикладной области. Вполне понятно, что при этом происходит одна из возможных математических формализаций реальной ситуации. Например, при изучении предпочтений потребителей у экономистов - маркетологов возникает вопрос: различаются ли мнения двух групп потребителей. При математической формализации мнения потребителей в каждой группе обычно моделируются как независимые случайные выборки, т.е. как совокупности независимых одинаково распределенных случайных величин, а вопрос маркетологов переформулируется в рамках этой модели как вопрос о проверке той или иной статистической гипотезы однородности. Речь может идти об однородности характеристик, например, о проверке равенства математических ожиданий, или о полной (абсолютной однородности), т.е. о совпадении функций распределения, соответствующих двух совокупностям.

Задача может быть порождена также обобщением потребностей ряда прикладных областей. Приведенный выше пример иллюстрирует эту ситуацию: к необходимости проверки гипотезы однородности приходят и медики при сравнении двух групп пациентов, и инженеры при сопоставлении результатов обработки деталей двумя способами, и т.д. Таким образом, одна и та же математическая модель может применяться для решения самых разных по своей прикладной сущности задач.

Важно подчеркнуть, что выделение перечня задач находится вне математики. Выражаясь инженерным языком, этот перечень является сутью технического задания, которое специалисты различных областей деятельности дают статистикам.

Метод, используемый в рамках определенной математической модели - это уже во многом, если не в основном, дело математиков. В эконометрических моделях речь идет, например, о методе оценивания, о методе проверки гипотезы, о методе доказательства той или иной теоремы, и т.д. В первых двух случаях алгоритмы разрабатываются и исследуются математиками, но используются прикладниками, в то время как метод доказательства касается лишь самих математиков.

Ясно, что для решения той или иной задачи в рамках одной и той же принятой исследователем модели может быть предложено много методов. Приведем примеры. Для специалистов по теории вероятностей и математической статистике наиболее хорошо известна история Центральной Предельной Теоремы теории вероятностей. Предельный нормальный закон был получен многими разными методами, из которых напомним теорему Муавра-Лапласа, метод моментов Чебышева, метод характеристических функций Ляпунова, завершающие эпопею методы, примененные Линдебергом и Феллером. В настоящее время для решения практически важных задач могут быть использованы современные информационные технологии на основе метода статистических испытаний и соответствующих датчиков псевдослучайных чисел. Они уже заметно потеснили асимптотические методы математической статистики. В рассмотренной выше проблеме однородности для проверки одной и той же гипотезы совпадения функций распределения могут быть применены самые разные методы – Смирнова, Лемана - Розенблатта, Вилкоксона и др.

Перейти на страницу: 1 2

Меню сайта