Основные понятия. Теоретические основы

Выбор наилучшего решения, когда вероятности возможных вариантов обстановки неизвестны, но существуют принципы подхода к оценке результатов действий

Здесь возможны три случая.

Во-первых, может потребоваться гарантия, что выигрыш в любых условиях окажется не меньше, чем наибольший возможный в худших условиях. Это линия поведения по принципу «рассчитывай на худшее». Оптимальным решением в данном случае будет то, для которого выигрыш окажется максимальным из минимальных при различных вариантах обстановки (так называемый максиминный критерий Вальда). Из табл. 9.2 следует, что таким решением является Р1, при котором максимальный из минимальных результатов равен 0,25.

Во-вторых, может иметь место требование в любых условиях избежать большого риска. Здесь оптимальным решением будет то, для которого риск, максимальный при различных вариантах обстановки, окажется минимальным (так называемый критерий минимаксного риска Сэвиджа). Из табл. 9.3 видно, что таким решением является Р3, для которого минимальный из максимальных рисков равен 0,45.

В-третьих, может потребоваться остановиться между линией поведения «рассчитывай на худшее» и линией поведения «рассчитывай на лучшее». В этом случае оптимальным решением будет то, для которого окажется максимальным показатель G (так называемый критерий пессимизма-оптимизма Гурвица):

где аij – выигрыш, соответствующий i-му решению при j-м варианте обстановки;

k – коэффициент, выбираемый между 0 и 1: при k = 0 – линия поведения в расчете на лучшее, при k = 1 – линия поведения в расчете на худшее.

Так, если примем k = 0,50, то, исходя из табл. 9.4, значение показателя G для способа действия Р1 будет

G1 = 0,50 х 0,25 + 0,50 х 0,40 = 0,32.

Соответственно для решений Р2, Р3, Р4 при k = 0,5 показатель G имеет значения G2 = 0,45, G3 = 0,52, G4 = 0,45. Оптимальным решением в данном случае будет Р3, при котором показатель G максимален.

Аналогичным путем могут быть найдены критерии G и оптимальные решения и при других значениях коэффициента k (см. табл. 4).

Таблица 4

Критерии пессимизма-оптимизма и оптимальные решения

Решения

k

 

0,00

0,25

0,50

0,75

1,00

P1

0,40

0,36

0,32

0,29

0,25

Р2

0,70

0,57

0,45

0,33

0,20

Р3

0,85

0,69

0,52

0,36

0,20

Р4

0,80

0,62

0,45

0,28

0,10

Оптимальные решения

Р3

Р3

Р3

Р3

Р2, P3

Перейти на страницу: 2 3 4 5 6 7 8 9 10

Меню сайта